
 of 1 15

Business
costs of
technical
debt

Whitepaper

Calculate the costs of technical debt to optimize your
software delivery.

Target audience
• Technical managers
• Software architects
• Development teams

About CodeScene
CodeScene was born in 2015 when founder
Adam Tornhill published the book “Your Code
as a Crime Scene”. It introduced a new
approach to software analysis which focused
on the evolution of a codebase over time.

CodeScene has evolved at a rapid pace to
become the next generation of code analysis
and is used by global Fortune 100 companies
in a wide variety of domains.

 of 2 15

Content

1. Introduction to technical debt
Abstract 3

Key takeaway 4

2. Technical debt is a business problem
The costs of technical debt 5

The talent link: why hiring more developers isn’t the answer 6

3. Calculate the impact of your technical debt
Establish a baseline to estimate technical debt costs 7

Know the fallacy — technical debt cannot be calculated from source code 7

Use unplanned work to calculate ROI 8

The formula — Calculate the untapped capacity tied up in technical debt 9

Act: Uncover the root causes 9

 Code Quality vs Relevance: not all technical debt is urgent 10

 Ensure organizational alignment with the software architecture 10

 Process loss — Observe the people side of code 11

4. Measure the expected outcomes
Deliver more with the existing organization 12

There’s more — Technical debt impacts planned work too 13

4. Summary 14

5. Further information
The code analysis platform 15

About the author 15

Credits 15

Contact 15

Blog and articles 15

 of 3 15

1. Introduction to technical
debt

Software organizations face high levels of
unplanned work such as bugs and
unexpected rework. Since internal software
quality lacks visibility, these excess costs
tend to manifest themselves as symptoms
like long lead times for implementing new
features, missed deadlines, and high
pressure on the technical support team.

This lack of visibility also makes it hard to act
upon the root cause, or identify the factors
to improve: Process, team, or the code
itself?

In this paper we present an approach to
calculate, visualize, and communicate the
costs of technical debt and code quality

issues. Using these techniques, a technical
leader can establish a baseline and set
improvement goals that convert into
measurable monetary savings and
decreased product risks.

The expected monetary returns are
significant; as shown in this paper, the
typical development organization can
increase their feature delivery efficiency by
at least 25% by managing technical debt.
That’s the equivalent of having 25% more
developers without additional staffing costs
or coordination needs.

Audience — Technical managers, software
architects, and development teams.

Abstract

 of 4 15

• Software development is rarely
sustainable. The average organization
wastes 23- 42% of their development time
due to technical debt.

• Hiring more developers increases
coordination costs, which in turn makes
the development less efficient, particularly
in codebases rife with technical debt.

• If your organization spends more than 15%
on Unplanned Work, then that’s a warning
sign that delivery potential is wasted.
Technical debt is likely to be a significant
chunk of that waste.

• Technical debt is often mistaken for “bad
code in general”. This is a dangerous fallacy
that leads organizations to waste months
on improvements that don’t have a clear
business outcome or aren’t urgent.

• Instead, the costs of technical debt can be
quantified by calculating excess unplanned
work via the formula we provid.

• Based on data, many organizations pay for
100 developers, but are only getting the
output equivalent of 75 developers.

• Technical debt is only one factor that often
comes together with team or process
issues that need to be understood and
addressed. Modern tooling helps detect
the bottlenecks.

• By addressing the root causes, an
organization is likely to increase their
effective development capacity by least
25%.

• 25% extra capacity means you could
deliver more features and also get a clear
win in customer satisfaction due to
improved quality.

Key takeaway

Each section in this paper summarizes the key
points:

 of 5 15

2. Technical debt is
a business problem

Technical debt is a metaphor
where, just like in finance,
debt incurs interest
payments. This means that
technical debt makes our
code more expensive to
maintain than it has to be.

This has a direct impact on our business.
Sustainable software development is about
balancing short- and long-term goals. A
product needs to grow with new features
and capabilities while ensuring that the
codebase remains maintainable, easy to
evolve, and well-understood.
A failure to balance these goals leads to
technical debt. Growing technical debt also
puts you at risk for cost overruns and missed
commitments. The resulting code quality
issues will in turn impact customer
satisfaction, with users experiencing bugs
and slow innovation. Let’s start by looking at
some real numbers.

The costs of technical debt

Key takeaway — The average organization
wastes 23-42% of their development time
due to technical debt.

A Scandinavian study reveals that
developers waste, on average, 23% of their
time due technical debt (Besker, T., Martini,
A., Bosch, J. (2019) “Software Developer
Productivity Loss Due to Technical Debt”).

As if that wasn’t alarming enough, Stripe
published data showing that software
developers spend 42% of their work week
dealing with technical debt and bad code
(Stripe, (2018), “The Developer Coefficient:
Software engineering efficiency and its $3
trillion impact on global GDP”).

23%

Average developers
waste 18% of their time

due technical debt.

42%

Developers spend 42%
of work week dealing
with technical debt.

 of 6 15

Key takeaway — Hiring more developers
leads to increased coordination needs, that
in turn can make the development less
efficient, particular in codebases rife with
technical debt.

Not only should these numbers be a
concern for every business, they also point
at a deeper long-term problem: the talent
supply. With a 23-42% waste of productivity,
companies will have to act to keep their
commitments and deliver on their roadmap.

A common response is to hire more people
to make up for the wasted capacity.

However, we cannot just hire more
developers forever. There is a limited talent
pool, and a global competition for skilled
developers. And even if we could hire as
many developers as we’d want, there’s
evidence that advises against it. Consider
the following graph:

In essence, the number of available hours
grow linearly with each new recruitment.
However, the number of possible
communication paths between the team
members grow much more rapidly and at
some point, each additional person becomes
a net loss. The gains in hours available is
consumed by the additional coordination
and communication overhead...and then
some (see https://codescene.com/blog/
visualize-brooks-law).

This means that we need to get more work
done with fewer people. Possible? Yes,
because we have untapped potential. What
if we could convert all those hours wasted on
technical debt and bad code into productive
hours? Let’s start by establishing a baseline
that we can measure improvements against.

Figure 1: Brooks's Law predicts that adding more
people to a late project makes it later.

The talent link: why hiring more
developers isn’t the answer

Persons vs Time to completion

 of 7 15

3. Calculate the impact of
your technical debt

Establish a baseline to estimate
technical debt costs

Key takeaway — If your organization spends
more than 15% on Unplanned Work, then
that’s a warning sign that delivery potential is
wasted and technical debt is likely to be a
significant chunk of that waste.

A common barrier to implementing any
proposed improvement is the uncertain
reward: how much can I save by investing
into this? Technical debt management is not
different. The main challenge is that most
organizations:

A. Don’t know what their current software

quality is,

B. Don’t know how much their technical
debt costs them today, and

C. Don’t know the business impact of the
current quality issues.

Hence, the first step to managing technical
debt is to establish a baseline, which gives
the organization situational awareness.
Before we go there, we need to cover a
common mistake: technical debt cannot be
calculated from the source code of a
system. Let’s see why.

Know the fallacy — Technical debt
cannot be calculated from source
code

Key takeaway — Technical debt is often
mistaken for “bad code in general”. This is a
dangerous fallacy that leads organizations to
waste months on improvements that don’t
have a clear business outcome or aren’t
urgent.

More specifically, we cannot use traditional
static code analysis techniques to estimate
or identify technical debt because:

• Technical debt cannot be detected in the
source code.

• Technical debt is not equal to code
quality issues.

• The cost of technical debt is not the time
it would take to refactor the code.

For these reasons, technical debt
calculations have to be based on outcome-
oriented metrics. Let’s see how a measure of
unplanned work serves that purpose.

 of 8 15

Key takeaway — Based on our data, many
organizations pay for 100 developers, but are
only getting the output equivalent of 75
developers.

Unplanned work is any task due to bugs,
service interruptions, or flawed software
designs. Unplanned work is problematic since
it steals capacity and leads to inherently

unpredictable delivery that turns an
organization into a reactive rather than pro-
active entity.

Most organizations track unplanned work
indirectly via their product life-cycle
management tools like Jira and Azure DevOps.
This makes it possible to calculate the ratio of
planned vs unplanned work over time:

Use unplanned work to calculate
ROI

Figure 2. Trend showing the percentage of Unplanned Work over the past year.
On average, 40-50% of the development time is wasted on unplanned work.

Average

Hours spent on development

Once we have a baseline for our development
organization, we can calculate a return on
investment (ROI) for planned improvements.

For that, we need to have a target; what’s an
acceptable level of unplanned work?

 of 9 15

We can never eliminate unplanned work
entirely. Instead, a good baseline is 15% which
is what high-performing organizations
achieve (see Accelerate: The Science of Lean
Software and DevOps (2018) by N. Forsgren
PhD, J. Humble, & G. Kim). That 15% baseline
lets us establish the following formula:

Waste (%) = UnplannedWork% – 0.15

UntappedCapacity ($) = Ndevelopers * AverageSalary * Waste

Example:
With 40% unplanned work, and 100 developers with an

average monthly cost of 7,000k$ we get:

Waste (%) = 0.40 – 0.15 = 25%

UntappedCapacity: 100 * 7,000 * 0.25 = 175.000 $ / month

Or, put the other way around, you’re paying
for 100 developers, but get the equivalent of
just 75 developers. 25% is wasted. Is that
sustainable?

Act: Uncover the Root Causes

Key takeaway — Tech debt is only one factor,
and it often comes together with team or
process issues that need to be understood
and addressed. Modern tooling helps
detecting the bottlenecks.

CodeScene has collected data from several
projects across different industries and of
different scales. Based on that data, many
organizations spend 25-40% of their
development capacity on unplanned work,
with outliers spending 70-80% on unplanned
work.

This span is close to the reported 23-42%
waste of productivity due to technical debt
(see The Costs of Technical Debt above).
However, technical debt is only one of several
factors contributing to excess unplanned
work. This means we shouldn’t handle
technical debt in isolation.

More specifically, there are 3 areas that need
to be investigated in depth when looking to
improve a software delivery flow:

1. Code quality vs Relevance — Not all
technical debt is urgent,

2. Ensure organizational alignment with the
software architecture, and

3. Process loss — Observe the people side
of code.

The following sections explain each one of
these areas.

The Formula — Calculate the
untapped capacity tied up in
technical debt

 of 10 15

Technical debt often implies severe code
quality issues. However, the opposite is not
necessarily true: just because some code
lacks in quality, that doesn’t mean it is or adds
to technical debt. It might not even be an
immediate problem.

Further, an organization simply cannot act on
all potential issues at once, so it’s vital to

prioritize the most critical code quality issues
and address them first.

Further reading:
Prioritize technical debt based on the
development relevance and business impact:
https://codescene.com/blog/evaluate-code-
quality-at-scale/

Code Quality vs Relevance: not all
technical debt is urgent

A software architecture never exists in a
technical vacuum – the architecture must
align with the organization (e.g. the
development teams). A misaligned
architecture leads to increased coordination
needs, and an increased risk for defects.
Measuring and visualizing your software
architecture from the perspective of your
development teams is vital.

Resource:
Read more on how to visualize logical
dependencies across organizational team
boundaries: https://codescene.com/blog/
codescene-release-3_6

Ensure organizational alignment
with the software architecture

Figure 3. Visualize the code quality in the context of development activity to
prioritize and assess the relevance of the findings.

https://codescene.com/blog/evaluate-code-quality-at-scale/
https://codescene.com/blog/evaluate-code-quality-at-scale/
https://codescene.com/blog/codescene-release-3_6/
https://codescene.com/blog/codescene-release-3_6/

 of 11 15

The practices of the development
organization can become bottlenecks too. It’s
important to measure how much time is
spent at idle, waiting for some activity to
happen. Common examples include long-

lived feature branches and Pull Requests
awaiting approval. Code can also turn into
knowledge islands, meaning a component is
written mainly by one developer which
introduces a key personnel dependency.

Process Loss: Observe the people
side of code

Figure 4. Visualize the knowledge distribution in a codebase. Detect bottlenecks and
problematic code with key personnel dependencies.

Main Authors Knowledge Risks Knowledge Loss Coordination Needs Code Owners Diffussion

 of 12 15

4. Measure the expected
outcomes

Key takeaway — The true
potential is higher than the
savings in unplanned work;
the calculations in this paper
are on the lower end of the
spectrum. Technical debt
comes with an opportunity
cost too, where planned
work takes longer than it
should as well.

The return on investment when managing
technical debt doesn't have to translate into
cost savings. Rather, it’s an opportunity to get
more done with the existing organization. If
you knew your organizations real potential
and could tap into it by paying down technical
debt, what would you do with that additional
capacity?

• Time to market — How much quicker can
you iterate on your product roadmap?

• Motivational boost — How much more
would developer productivity increase just
through the motivational boost of no
longer having to wade through swaps of
technical debt?

• Quality impact — How much quicker can
you act on reported bugs, and how much
will that impact customer satisfaction?

Deliver more with the existing
Organization

 of 13 15

Technical debt makes it harder and riskier to
modify existing source code. This has
consequences for the product and its market.
With longer lead times, you just cannot
explore all the opportunities you see in your
domain. Innovation gets down-prioritized.

When translated to a business context, long
lead times for new features mean a longer
time to market. This makes it hard to keep
customer commitments. With technical debt,
planned work takes longer too.

There’s more — Technical debt
impacts planned work too

Figure 5. Technical debt impacts the lead time for implementing new product features. Data and example from
https://codescene.com/blog/communicate-technical-improvements-to-non-technical- stakeholders/

The positive effects are seen on the lead times for implementing new
features; starting with the improvements in Feb 2020, the time to

market is significantly faster and more predictable (see the shaded area
decreasing, which means less variance between features).

Increased predictability — less
variance in completion times.

Unpredictable — the shaded area shows that each feature varies a lot in
completion. Makes it hard to estimate when it can be delivered.

Lead Time for Changes: wopr-frontend

https://codescene.com/blog/communicate-technical-improvements-to-non-technical-

 of 14 15

5. Summary

Technical debt is pervasive in the software
industry, and accounts for a productivity loss
of 23-42%. The key challenges with technical
debt are that:

A. Technical debt lacks visibility, making it
hard to communicate its cost and
impact.

B. Technical debt isn’t actually a technical
problem, and hence needs to be
prioritized and aligned with the business.
We cannot “fix” all technical debt at
once, neither should we.

C. Adding more people to counter the
effects of technical debt doesn’t scale
well.

This paper presented an approach to
estimate the costs of technical debt and its
related issues based on the wasted potential
of the organization. The calculations are on
the lower end of the actual costs; technical
debt also impacts planned work, constraints
innovation, and effect developer motivation.
Thus, technical debt represents an
opportunity; measuring the real potential of
your organization gives you a return on
investment for managing technical debt in
terms of freeing additional capacity to drive
your business and product. It’s your
advantage.

 of 15 15

CodeScene is a Swedish startup founded in
2015. CodeScene is a quality visualization
platform for software that prioritizes technical
debt, detects delivery risks, and measures
organizational aspects. The CodeScene
platform is used by global Fortune 100
companies in a wide variety of domains.

CodeScene automates all the metrics
covered in this paper.

6. Further information

Contact: sales@codescene.com
Twitter: @codescene
LinkedIn: https://www.linkedin.com/
company/codescene

www.codescene.com
www.codescene.com/blog/

Contact Blog and articles

Thanks to Daniel Wellman, Joseph Fahey,
Aslam Khan, Peter Caron, and Łukasz Rauer
for reading early drafts of this paper. Your
feedback and comments made the paper so
much better than what I could have done on
my own. I also want to thank all CodeScene
users that I had the pleasure of interacting

with over the years. This paper grew out of
my experience with analyzing real-world
codebases and listening to your feedback.
Technical debt is a tricky topic, and I want to
thank you for all the great conversations
where I got to learn about your context and
challenges. Thanks!

Credits

The code analysis platform

Adam Tornhill is a programmer who
combines degrees in engineering and
psychology. He's the founder of the
CodeScene analysis platform. Adam is also
the author of Software Design X-Rays, the
best-selling Your Code as a Crime Scene,
Lisp for the Web and Patterns in C.

About the author

mailto:sales@codescene.com
https://twitter.com/codescene
https://www.linkedin.com/company/codescene
https://www.linkedin.com/company/codescene
http://www.codescene.com
https://codescene.com/blog/

