
 of 1 14

Code Red: 
The business 
impact of low 
code quality

Whitepaper

This paper presents data from a large-scale study on how code quality 
impacts software companies in terms of time-to-market and product 
experience. We conclude with an analysis of the impact and specific 
recommendations towards successful software development.

Target audience 
• Business managers 
• Product owners/managers 
• Technical managers 
• Tech leads 
• Development teams  

About CodeScene 
CodeScene is the intersection of code and 
people, empowering companies to build great 
software. 

CodeScene was born in 2015 when founder 
Adam Tornhill published the book  “Your Code 
as a Crime Scene”. It introduced a new 
approach to software analysis which focused 
on the evolution of a codebase over time. 

CodeScene has become the next generation 
of code analysis and is used by global Fortune 
100 companies in a wide variety of domains. 



 of 2 14

 

Content

1. Introduction: a software tragedy 
Source code lacks visibility       4 

Lack of visibility makes it easy to trade short-term gains for long-term sustainability  4 

2. Where we are: the lack of code quality measurements
Code quality is an abstract concept, inaccessible to the business    5 

Why is it so hard to measure the business impact?      5 

3. Hard facts: the business impact of code quality  
We need to know rather than “know”      6 

Development data from 39 companies       6 

Measure code quality via the Code Health metric      7 

Measure the business impact by Time-In-Development and Defects   7 

Results         8 

 124% faster development in Green Code     8 

 The uncertainty in Red Code means a feature can take an order of magnitude  

 longer to implement       8 

 15 times more defects in Red Code      9 

4. Impact: code quality enables successful software 
Enable a data-driven approach to software development    10 

Increase developer productivity       10 

Reduce uncertainty in estimates and commitments     11 

Speed + Quality — you can have it all      12 

5. Summary: a call to put theory into practice 
Key message         13 

Stakeholder benefits        13 

Prioritise code health issues via Hotspots      13 

6. Further information 
The code analysis platform       14 

About the author        14 

Credits         14 

v1.0 March 2022



 of 3 14

 1

   A. Tornhill & M. Borg (2022), “Code Red: The business impact of code quality - A Quantitative 1

  Study of 39 Proprietary Production Codebases”. Accepted for publication in Proc. of  International Conference on 
Technical Debt 2022

• Efficient software development is a 
competitive advantage that enables 
companies to maintain a short time-to-
market with a mature product experience. 

• However, research shows that 23-42% of 
developer’s time is wasted due to 
Technical Debt and bad code. 

• A key reason that this waste is tolerated is 
because code quality lacks visibility to non-
tech stakeholders and possible gains in 
code quality are hard to translate into 
business value.  

• This paper aims to elevate code quality to 
the business level by putting numbers on 
the impact of unhealthy code. 

• Our research investigates 39 commercial 
codebases from various industries and 
domains. The finding are peer reviewed, 
statistically significant, and reproducible.1 
All metrics were automated via 
CodeScene. 

• The results show that code quality has a 
dramatic impact on, both, time-to-market 
as well as the external quality of the 
product. High quality code has: 

A. 15 times fewer bugs, 

B. twice the development speed, and  

C. 9 times lower uncertainty in 
completion time.

Key takeaways 

Everyone in the software industry “knows” that code quality is important, yet we never had any 
data or numbers to prove it. Consequently, the importance of a healthy codebase is largely 
undervalued at the business level.  
With this paper we remove the quotation marks so that “knows” becomes knows by attaching 
numbers on the impact of unhealthy code. That way, code quality can finally become the 
business concern that this study shows that it must be.

15 times fewer defects Implement features 
twice as fast

Key findings for healthy code

Reduce uncertainty in task 
completion times by an 
order of magnitude!



 of 4 14

 

1. Introduction: a software 
tragedy

One of the great tragedies in software 
development is that code quality lacks 
visibility. Hence, it becomes far too easy to 
trade short-term wins like new features for 
the long-term maintainability of the code 
base. 

This puts the business at risk: efficient 
software development is a competitive 
advantage that enables companies to 
maintain a short time-to-market without 
compromising the quality of their products. 
Adding to that challenge, our industry also 
faces a global shortage of software 
developers; demand substantially outweighs 
supply.   

So at the same time that our industry is 
struggling with recruiting enough talent to 
meet ever shorter product cycles, research 
indicates that up to 42% of developers' time 
is wasted dealing with technical debt. 

This implies that there is an untapped 
potential for software projects if the code 
quality is improved and technical debt paid 
down. 

Until now, the business impact of code 
quality has been vague and frequently 
dismissed as a technical concern. Our 
mission is to change that view: in this paper 
we present our findings from studying 39 
proprietary production codebases with 
respect to lead times for new features and 
the business risks in terms of defects. 

Our results indicate that improving code 
quality could free existing capacity; with 15 
times fewer bugs, twice the development 
speed, and 9 times lower uncertainty in 
completion time, the business advantage of 
code quality is unmistakably clear. 

“With 15 times fewer bugs, twice the development speed, and 9 times 
lower uncertainty in completion time, the business advantage of code 
quality is unmistakably clear.”



 of 5 14

 23

 Besker, T., Martini, A., Bosch, J. (2019) “Software Developer Productivity Loss Due to Technical Debt”2

 https://codescene.com/technical-debt/whitepaper/calculate-business-costs-of-technical-debt.pdf3

2. Where we are: the lack of 
code quality measurements
Without an industry-wide 
standard, code quality has 
remained a subjective and 
abstract concept that fails to 
gain traction at the business 
level. 

The costs of Technical Debt and poor code 
quality are well known.2, 3  In the face of this 
trillion dollar problem, it’s surprising that we 
still don’t have any business level KPIs around 
technical debt. The lack of clear and 
quantifiable benefits makes it hard to build a 
business case for code quality and, hence, it’s 
unfortunately much easier to trade short-term 
wins like new features for long-term 
sustainability. 

Well-defined code quality KPIs would allow all 
stakeholders to assess the situation, estimate 
the business impact, and prioritise accordingly, 
similar to how financial KPIs drive businesses 
today. 

We believe that there are two main reasons 
behind the absence of technical debt KPIs:  

1. code quality is highly subjective, and 

2. the industry lacks an established 
relationship between code quality and 
business outcomes. 

Why is it so hard to measure the 
business costs of low code quality?

It’s important to point out that the technical 
debt costs referenced so far are based on 
surveys and self-reported estimates and, to 
the best of our knowledge, no prior research 
has measured  the relationship between 
development speed and code quality. 

Part of the reason is because existing models 
for technical debt (e.g. SQALE and SIG TD)  
lack a measure of the actual business impact;  
the cost of technical debt is not the time it 
would take to fix the code — that’s the 
remediation work -- but rather the additional 
development work due to technical quality 
issues. 

To successfully crack this problem, we need 
to establish a link between a reliable code 
quality measure and the impact on the 
business.

10%

Only 10% of business 
managers actively 

manage technical debt.

42%

Developers waste 42% 
of the work week on 

technical debt.

https://codescene.com/technical-debt/whitepaper/calculate-business-costs-of-technical-debt.pdf


 of 6 14

 4

 Antonio Martini, Terese Besker, and Jan Bosch. 2018. Technical debt tracking: Current state of practice: A survey and 4

multiple case study in 15 large organizations. Science of Computer Programming 163 (2018), 42–61. 

3. Hard facts: data on the business impact 
of code quality

Everyone in the software 
industry “knows” that code 
quality is important, yet there 
is little data supporting that 
claim.  

Without quantifiable values, we — as an industry 
— are unlikely to bridge the existing 
communication chasm between engineering 
and business.  This is evident in the previously 
referenced studies: even though technical debt 
wastes up to 42% of developer’s time, less than 
10% of all business managers actually manage 
their technical debt.  

But it gets worse. Much worse. A study by 
Besker et al. reports that “none of the 
interviewed companies had a clear strategy on 
how to track and address the wasted time”4.  
This implies that the majority of companies: 

A. don’t know how much time they waste on 
poor quality code and technical debt, 

B. don’t know where the main development 
bottlenecks are amongst millions of lines of 
code, or  

C. don’t have a strategy to reduce that waste. 

The study and numbers presented in this white 
paper aim to change the situation by offering 
statistically significant data on the relationship 
between code quality and business outcome.

Development data from 39 companies

To measure the relationship between code 
quality and the business impact, we collected 
data from 39 proprietary codebases under 
active development. The collected data 
represents all development tasks that were 
completed over the past 6-12 months, 
depending on codebase. 

We included codebases from industry 
segments as diverse as retailing, 
construction, infrastructure, brokerage, data 
analysis, and more to ensure a representative 
sample. We also capture data that generalises 
across implementation technologies. Hence, 
our dataset includes codebases implemented 
in 14 different programming languages 
(Python, C++, JavaScript, C#, Java, Go, etc.). 

All companies gave their consent to 
participate in the study, and provided us with 
access to their source code repositories and 
Jira product data. 

The measurements are performed through 
the CodeScene tool, which automates the 
code quality classification as well as 
measuring the cycle time in development and 
the ratio of software defects. Let’s look at the 
metrics and results. 

• 40,000 software modules 
• 14 programming languages 
• Multiple industry segments



 of 7 14

 5

 https://codescene.com/code-health5

Visualising code health: each source code file is classified based on maintenance costs and risks.

Our research uses the Code Health metric 
as a proxy for code quality. Code health is 
an aggregated metric based on 25+ 
factors scanned from the source code. 5 
The code health factors are known – from 
research – to correlate with increased 
maintenance costs and an increased risk 
for defects. 
Based on the code health score, each 
source code file is automatically 
categorised by the CodeScene tool as: 

• Green Code (healthy code with low risk 
for maintenance issues), 

• Yellow Code (problematic code), and  

• Red Code (unhealthy code with high 
maintenance risks).

Measure Code Quality via the 
Code Health metric

Measure the business impact via 
Time-In-Development & Defects
The business impact of low code health is 
measured by integrating information from 
product life-cycle tools like Jira. The CodeScene 
tool fetches Jira issues, maps them to source 
code files, and calculates two data sets: 

1. Number of defects per source code file, and 
2. Time-In-Development per file and Jira ticket. 

Time-In-Development is the cycle time a 
developer needs to implement the code 
associated with a Jira backlog item. The cycle 
time is automatically calculated by CodeScene, 
and is defined as the time between when an 
issue is moved to an “In Progress” state and 
when the last code related to that Jira issue is 
committed in version-control. 

From a business perspective, the number of 
defects impacts the product experience: 
software with a high degree of defects delivers 
a negative product experience, which in turn 
impacts customer satisfaction and increases the 
risk for customer churn. 

A longer Time-In-Development represents waste 
that negatively impacts the roadmap execution. 
Further, if work in low quality code leads to 
more unpredictable delivery times, then that will 
lead to lower confidence in commitments and 
strain the coordination within the organisation. 
Uncertainty is the enemy of any software 
delivery.

Code health automatically 
identifies problematic source code

The Time-In-Development can be calculated 
automatically: no administrative overhead 
for measuring waste & opportunities.

https://codescene.com/code-health


 of 8 14

 

124% faster development in Green Code

Our first research objective investigates the link between 
code health and time-to-market. We do that by measuring 
the average Time-In-Development for Jira tasks and 
correlating those numbers with the code health of the 
impacted source code files. 

Our results show that implementing a Jira task in Green 
Code is 124% times faster than in Red Code for tasks of 
similar scope. This means that a feature that takes 2 weeks 
to implement could have been delivered in less than one 
week if the code had been healthy. 

We also note a significant impact already at the Yellow 
code health level: the average development time for a Jira 
issue in Yellow code is 78% longer than in healthy code. 

The uncertainty in Red Code means a feature 
can take an order of magnitude longer to 
implement

The additional development time for Red Code matches 
the intuition of experienced software developers: there’s 
a productivity cost associated with low code quality. 
However, to us as a research team, the big surprise was 
that Red Code isn’t just more expensive: it also seems to 
be more unpredictable than healthy code. 

We explored that by measuring the maximum Time-In 
Development for each source code file. The results show 
that the maximum time to implement a Jira issue in Red 
Code  is an order of magnitude larger than in healthy 
code! 

Translated to a business context, an order of magnitude 
difference in completion time means very high 
uncertainty. As a product owner, high uncertainty makes 
it impossible to keep any commitments; be it to 
customers or internal stakeholders. And to a developer, 
uncertainty causes stress, over-time, and missed 
deadlines. 

In essence, Red Code is not only inherently more expensive: 
it also carries a significant business risk.

Implementing a feature or fixing a bug is twice as 
expensive in Red Code (relative scale).

Red code: more than 9 times longer average maximum 
time leads to uncertainty during development (relative 

scale).



 of 9 14

 

In addition to the excess development costs, we also 
wanted to explore the external quality perspective: 
does Red Code contain more bugs then code of 
higher quality? 

The results are quite dramatic: Red Code has fifteen 
times more defects on average than healthy code! 
Just like for the maximum Time-In-Development, the 
relationship isn’t linear: Red Code is significantly more 
problematic than Yellow code. That said, even Yellow 
code comes with a real cost and has, on average, 4 
times as many defects as healthy Green Code. 

This finding adds another business dimension, 
namely customer satisfaction. A high degree of 
defects also impacts the development team in the 
form of unplanned work. Bug prone code makes it 
hard to stay focused on planned tasks, which in turn 
causes additional waste via context switches. 

15 times more defects in Red Code

All findings are statistically significant

All findings reported in this paper are statistically significant. 
That means, in layperson terms, that the findings are 
unlikely to be just a fluke or randomness in the data. 

This is important: when advising on professional software 
development, money, jobs, and people are impacted. 
Hence, it’s our responsibility as researchers to make sure 
our data and resulting recommendations are as accurate 
and reliable as possible; the software profession is still a 
relatively young field in need of more facts and fewer 
opinions. 

The formal research publication (A. Tornhill & M. Borg, Proc. 
of the International Conference on Technical Debt, 2022)  
— the foundation for this white paper — defines the details 
of the data collection, analysis and statistical methods. We 
also made the data public so that the results can be 
replicated.

Peer reviewed & accepted for 
the International Conference 
on Technical Debt 2022 

Backed by academic research 
in collaboration with leading 
software experts

Red code: 15 times more defects compared to high-quality 
code (relative scale). 



 of 10 14

 6

 Antonio Martini, Terese Besker, and Jan Bosch. 2018. Technical debt tracking: Current state of practice: A survey and 6

multiple case study in 15 large organizations. Science of Computer Programming 163 (2018), 42–61. 

4. Impact: code quality enables successful 
software
Given that software companies waste up to 42% of 
developers’ time on technical debt, it is surprising that as few 
as 7.2% of organizations methodically track technical debt6.

Increase developer productivity

Due to the predicted global shortage of software 
developers, companies will not be able to hire as many 
developers as might be needed; demand substantially 
outweighs supply.  

However, with 15 times fewer bugs and twice the 
development speed, existing capacity is freed to fuel 
innovation and product growth. This is a clear and 
quantifiable business advantage that comes with  
healthy code.

The efficiency loss due to low code quality hasn’t been 
possible to assess at code level. The study in this report 

aims to change that by quantifying the costs of Red Code.

One explanation for why this waste is tolerated could 
be simply that the impact of technical debt hasn’t 
been possible to quantify at the level of the source 
code. Consequently, the few companies that do 
manage technical debt spend a significant amount of 
that time on identification and prioritization of 
potential issues to fix. Actual improvements are more 
rare, and the outcome uncertain. 

The findings in this paper give us the option to 
challenge the status quo  and elevate code quality to 
the level of a business KPI. More specifically, knowing
— as a software company — where you have Red, 
Yellow, and Green Code enables a data-driven 
approach to software development.

Enable a data-driven approach to software 
development



 of 11 14

 7

 https://codescene.com/blog/evaluate-code-quality-at-scale/7

Without visibility into your product’s code 
quality it becomes too easy to ignore any 
warnings from engineering. Over time, the 
problems will deepen: features that took one 
day to develop a year ago now need 2 weeks, 
and often lead to unexpected rework. Low 
code quality kills innovation and progress. 

Instead, knowing the health of your code 
reduces risk and aligns expectations. 
Consider a Product Manager (PM) responsible 
for the company’s roadmap. If you — as a 
potential PM — knows the health of your 
code, then you’d use that when planning and 

prioritising features. Planning a feature that 
involves Red Code implies that the outcome 
is:  
A. higher risk, 
B. more expensive in terms of development 

time, and 
C. a large uncertainty in completion time. 

That way, you can make data-driven decisions 
on whether to go ahead with the feature as 
planned or, in case of code health issues, 
decide to start by refactoring/improving the 
existing code to reduce the risk. 

Example of a code health visualisation of React.js from Facebook: we immediately see where the risks 
area (visualisation via the CodeScene tool).7

Reduce uncertainty in estimates and commitments 



 of 12 14

 89

 N. Forsgren PhD J. Humble and G. Kim. 2018. Accelerate: The science of lean software and devops: Building and 8

scaling high performing technology organizations. IT Revolution. 

 https://www.devops-research.com/research.html9

Software development productivity is a 
depressing topic: most proposed measures 
like velocity, added lines of code, commit 
counts, etc. have done more harm than 
good. 

A prominent exception is the work by the 
DevOps Research Assessment (DORA)9 that 
introduced productivity measures via its Four 
Key Metrics (FKM) . These metrics were also 
popularised through the Accelerate book8, 
and are now spreading in the software 
industry. 

The FKM of Accelerate clearly show that 
there is no trade-off between speed and 
quality. In fact, in order to deliver fast you 
also need high quality: the shorter your cycle 

times for deployment, the fewer production 
failures. This might sound counter-intuitive at 
first, but — as noted in this paper — our data 
suggests the same relationship for coding: 
the higher the quality, the quicker your 
development. 

As such, one goal of our work is to 
complement DORA’s delivery metrics with 
similar correlations between code quality 
and its business impact. As pointed out in 
the previous section, the waste during 
development can be significant. 

Speed + Quality — you can have it all

“There is no trade-off between speed and quality. In fact, in order to 
deliver fast you also need high quality code.”

Figure. The scope of this white paper and how it complements the FMK from Accelerate. 



 of 13 14

 10

 https://codescene.com/blog/3-code-health-kpis/10

5. Summary: a call to put 
theory into practice 
This research was initiated to make code quality a 
business concern by putting numbers on the 
impact of unhealthy code. It’s an important topic 
since code quality has been an abstract concept 
that fails to get attention at the management level. 
Consequently, the software industry is wasting 
critical developer time on code that’s more 
expensive to maintain than it should be. 

Measuring code health enables data-driven 
decisions around core topics like Technical Debt, 
priorities, and roadmap risks. In particular, code 
quality improvements can come with a business 
expectation. That said, the impact of code quality 
goes well-beyond financial numbers; the inherent 
uncertainty in Red Code is likely to cause stress and 
friction within an organisation. 

Finally, we acknowledge the fact that correlation 
doesn’t imply causation. We plan to conduct future 
studies that help uncover the impact of code 
quality.

The Code Health metric used in this research is 
automated and available via the CodeScene tool. 
That way, organisations can start measuring these 
KPIs today. 

• Business managers: as evident from the findings 
in this paper, code quality constrains the 
business. Make Code Health a KPI that’s tracked 
at the same level as pure business metrics like 
ARR, customer churn, EBIT, etc. 

• Product owners/managers: manage risk and 
priorities via Code Health views. In particular, be 
conscious about the inherent uncertainty in Red 
Code. Use Code Health measures to balance the 
trade-off between new features vs improving 
what’s already there. 

• Development teams: these research findings 
offer a way to communicate improvements to 
the product and leadership teams. Many 
developers are forced to take on technical debt 
when the organisation pushes for wishful 
deadlines; use the Code Health views to 
communicate the risks using a terminology that 
means something to the business. Also, use 
Code Health trends10 to show the negative 
impact influenced by accumulated technical 
debt.

Key message Stakeholder benefits

There’s more: 
Prioritise code health issues via Hotspots 

Organisations need to balance short- and long-
term goals. No matter how much we want, we 
simply cannot fix all Red and Yellow code at 
once. Instead, we need to prioritise by impact. 

CodeScene’s hotspots are a powerful tool for 
identifying the most expensive code quality 
issues. Read all about it here: https://
codescene.com/blog/prioritize-technical-debt-
by-impact/

https://codescene.com/blog/prioritize-technical-debt-by-impact/
https://codescene.com/blog/prioritize-technical-debt-by-impact/
https://codescene.com/blog/prioritize-technical-debt-by-impact/


 of 14 14

CodeScene is a Swedish startup founded in 2015. CodeScene 
is the intersection of code and people, empowering 
companies to build great software. The CodeScene tool 
represents a new generation of code analysis and used by 
global Fortune 100 companies in a wide variety of domains. 

CodeScene automates all the metrics covered in this paper.

6. Further information 

Contact: adam.tornhill@codescene.com  
Twitter: @codescene 
LinkedIn: https://www.linkedin.com/
company/codescene 

www.codescene.com 
www.codescene.com/blog/ 

Contact Blog and articles

A big, big THANKS to Markus Borg from Lund 
University for co-authoring the original 
research paper. Invaluable contributions! 

Thanks to Aslam Khan, Joseph Fahey, and 
Romanela Polutak for reading drafts of this 
paper. Your feedback and comments made 
the paper so much better than what I could 
have done on my own.  

This paper represents the progress towards a 
long-term goal of mine: make code quality a 
first class citizen of business. On this journey, 
I learned a lot from the technical debt 
community as well as from all the people that 
I had the chance to meet and discuss with 
over the years. Thanks! 

Credits

The CodeScene tool

Adam Tornhill is a programmer who combines degrees in 
engineering and psychology. He's the founder of 
CodeScene, and the author of Software Design X-Rays, the 
best-selling Your Code as a Crime Scene, Lisp for the Web 
and Patterns in C. 

About the author

v1.0 March 2022

mailto:adam.tornhill@codescene.com
https://twitter.com/codescene
https://www.linkedin.com/company/codescene
https://www.linkedin.com/company/codescene
http://www.codescene.com
https://codescene.com/blog/

