Jan 7, 2026

Al-Ready Code:
How Code Health
Determines Al
Performance

A Whitepaper on how Al fail
Code Health is the missi
Al-assisted develop

By Adam Tornhill

Code health determines whe
Large-scale studies show that
unhealthy code, with defect ris
longer optional.

fﬁ

(O) CodeScene



Executive summary

Al coding assistants promise faster delivery, but their performance
depends heavily on code quality.

Large-scale studies show that
Al-generated changes break

significantly more oftenin +30%
unhealthy code, with defect risk

higher defect risk

increasing by at least 30% even
when Al works on unhealthy code

within relatively maintainable
systems.

Because existing research excludes truly low-quality code, real-world
risk is likely much higher and non-linear.

In the Al era, healthy code is no longer optional. It is a prerequisite for
safe, effective, and economically viable Al adoption. This paper
explains how to assess Al-readiness using Code Health indicators and
how to uplift unhealthy code so Al can act as a reliable engineering
partner.



Al is now a software
maintenance actor

For decades, the maxim has been that "programs must be written for people to read, and only
incidentally for machines to execute” (SICP). Human-readable code is essential for maintaining
secure, reliable, and efficient software development.

But with the advent of Al coding, textual source code now has a broader audience:
machines need to understand it, too. Al agents increasingly participate in code
modification, refactoring, and generation.

In , we showed that poor code quality
correlates with higher defect rates, slower delivery, and ballooning costs. Now we're seeing
the next evolution of that insight: unhealthy code also makes Al behave badly.

0.60

0.55 Limited risk:
healthy code

0.50

0.45

Break rate

0.40

0.35

0.30

Code Health


https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf?utm_campaign=34032445-AIreadycode&utm_source=website&utm_medium=whitepaper&utm_content=codered

Al-friendliness starts with Code Health

The study Code for Machines, Not Just Humans defines “Al-friendliness” as the probability
that Al-generated refactorings preserve behavior and improve maintainability. It's a large-scale
study of 5,000 real programs using six different LLMs to refactor code while keeping all tests
passing. The results were stark:

Unhealthy code
. . y . There's a 30% higher
LLMs consistently triggered a higher rate )

. . defect risk when
perform better in of Al-introduced apolving Al to
healthy code. defects across the 2 .

board problematic code.

The study used the CodeHealth™ metric as a proxy for code quality. Code Health is known to
correlate with lower defect density and increased speed. Code Health has also been used in
recent industry-facing Al studies.

See the Code Health overview for more details, the multi-dimensional Al benchmarking for
industry examples, and the paper on ACE: Automated Technical Debt Remediation for an
applied Al study.

e . . .
Development is 9x faster in healthy code CodeHealth the leading quality metric
CodeScene's CodeHealth™ is the only
code-level metric with proven business
impact (faster & better), backed by award
winning, fact-based research.

1.00
0.801

0607 CodeHealth™ is a ten point scale with

0401 three categories:

0.201

Development time for code changes

e Green (healthy code): 9.0+
ety Trenemete A e Yellow (technical debt): 4.0 - 8.9
Code Health category e Red (severe technical debt): 1.0 - 3.9


https://arxiv.org/pdf/2601.02200
https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf?utm_campaign=34032445-AIreadycode&utm_source=website&utm_medium=whitepaper&utm_content=codered
https://codescene.com/product/code-health?utm_campaign=34032445-AIreadycode&utm_source=website&utm_medium=whitepaper&utm_content=codehealth
https://arxiv.org/pdf/2508.13757
https://arxiv.org/pdf/2507.03536

The hidden limitation: Reality is worse. Much worse.

A 30% increase in Al-induced defects is severe. But the study only included code with Code
Health 2 7.0. This means the research never touched the truly unhealthy code found in many
legacy codebases: the modules scoring 4, 3, or even 1.

What would the Al error rate be on such code? Based on patterns observed across all Code
Health research, the relationship is almost certainly non-linear:

At Code Health 7, Al breaks code At Code Health 3, breakage may
frequently become the default outcome

This mirrors human data: defect rates rise sharply in tangled, deeply unhealthy code.

1.00 r'
\
\\
N a ©
. \ . . e ] ..
PI"OJeCted Al break rate: N Danger zone: Limited risk:
0.80 \ unhealthy code healthy code
steep INCrease In \\
\
unhealthy code .
\
(0] 0.60 \
o
o
X
®©
g
0
< 0.40
0.20
0.00
I I | | I I I I 1
1 2 3 4 5 6 7 8 9 10
Code Health

Projected Al break rate for truly unhealthy code below 7.0 in Code Health; the break rate is likely to increase steeply. The projection is
based on the non-linearity of Code Health outcomes observed in both Code Red and the Increasing, Not Diminishing Returns papers.

This gap highlights a critical risk: Organizations with very low-quality codebases may
experience dramatically higher Al breakage rates than the study could measure.



The business implication
of Al: Technical debt now
has a multiplier

Naively used, Al agents will serve more as legacy code generators than genuine help. There's
now clear evidence to make any Al adoption a serious concern:

More bugs

Al adoption leads to without any increase in throughput.

Al makes you slower

This is a fascinating one: developers self-estimated that their Al reduced completion
time by 20%, whereas in reality () than a control group of devs
without Al.

Initial Al velocity gains are cancelled out

Novel research demonstrates how the initial promising velocity gains from Al adoption
are after just two months. The reason? A massive increase in code
complexity.

So where is the good news? Well, there is hope. As the research shows, Code Health acts as a
protective buffer. Healthy code reduces error-generation risk and gives Al the structural
clarity it needs to act more predictably.

The CodeHealth™ metric plays the key role. It's the objective standard that turns Al from a fast
code generator into

The first step is to use Code Health for assessing Al-readiness. That way, you avoid risks by
putting Al to work only where the probability of success works in your favour.


https://resources.uplevelteam.com/gen-ai-for-coding
https://arxiv.org/abs/2507.09089
https://arxiv.org/pdf/2511.04427
https://codescene.com/blog/strengthening-the-inner-developer-loop-turn-ai-into-a-reliable-engineering-partner?utm_campaign=34032445-AIreadycode&utm_source=website&utm_medium=whitepaper&utm_content=blogpost

Healthy and highly maintainable code comes with other benefits, too. Not only does it elevate
Al performance, healthy code also shortens development times and reduces defects up to
15x. As a concrete example, the statistical model shows that improving Code Health from the
industry average of 515 to the elite level of 91 gives the following benefits:

~36% faster ~36% reduction

development speed in production defects

This implies that you can have it all: Al-friendly code means increased speed with quality.

/
Top 5% performers: 9.1

Hotspots code health: 5.15

Value creation
development speed + defect reduction

Code Health »
(low scores lead to longer development times)

The relationship between Code Health and business outcomes (faster & better) is non-linear; value creation accelerates in highly
maintainable code (Data from M. Borg, et. al. 2024) "Increasing, not Diminishing: Investigating the Returns of Highly Maintainable Code”).

! Caution: Al break rate is never zero

Maintaining and enforcing (e.g. via code health aware MCP servers) strong code quality
protects the shape and health of your codebase, but behavior still needs checks. That's
where a strong test suite, good code coverage, and human review comes in; an Al
cannot be trusted to put code into production.

With any technical debt removed, those checks are far easier to perform. Developers
review healthy code more than twice as fast as unhealthy code, which dramatically
lowers the overhead of keeping Al safe.


https://arxiv.org/pdf/2401.13407
https://codescene.io/docs/developer-tools/mcp/codescene-mcp-server.html
https://arxiv.org/pdf/2304.11636

Conclusion: Code for
machines, not only humans

Machines get confused by the same patterns as humans. The evidence is clear: unhealthy
code undermines Al-assisted development, increasing breakage rates and reducing the
benefits of automation.

Organizations that want safe, reliable, and effective Al-assisted development must invest in

Code Health as a foundational capability. Without it, Al will not accelerate delivery; it will
accelerate defects and developer frustration.

Safeguard healthy code, uplift unhealthy code

You have seen the research on Al readiness and why code health is essential for Al-
assisted development. The CodeScene MCP Server turns those insights into action by
exposing CodeScene’s Code Health analysis as local, Al-friendly tools.

The result is three high-impact use cases:

e Safeguard Al-Generated code, automatically
e Uplift unhealthy code: refactoring safely with + Al
e Understand existing code before acting

Code Health visualisation
Example on areas with red, unhealthy
code where an Al agent will have a high

break rate.

Read more and try out the MCP.

View the docs



https://codescene.com/product/integrations/ide-extensions/ai-refactoring?utm_campaign=34032445-AIreadycode&utm_source=website&utm_medium=whitepaper&utm_content=ace
https://codescene.io/docs/developer-tools/mcp/codescene-mcp-server.html

