
Jan 7, 2026

AI-Ready Code:
How Code Health
Determines AI
Performance
A Whitepaper on how AI fails, and why
Code Health is the missing foundation of
AI-assisted development

By Adam Tornhill

Code health determines whether AI accelerates delivery or amplifies defects.

Large-scale studies show that AI-generated changes fail significantly more often in

unhealthy code, with defect risk rising by at least 30%. In the AI era, healthy code is no

longer optional.

Whitepaper

Executive summary

AI coding assistants promise faster delivery, but their performance

depends heavily on code quality.

Large-scale studies show that

AI-generated changes break

significantly more often in

unhealthy code, with defect risk

increasing by at least 30% even

within relatively maintainable

systems.

+30%

higher defect risk
when AI works on unhealthy code

Because existing research excludes truly low-quality code, real-world

risk is likely much higher and non-linear.

In the AI era, healthy code is no longer optional. It is a prerequisite for

safe, effective, and economically viable AI adoption. This paper

explains how to assess AI-readiness using Code Health indicators and

how to uplift unhealthy code so AI can act as a reliable engineering

partner.

1

AI is now a software
maintenance actor

For decades, the maxim has been that "programs must be written for people to read, and only
incidentally for machines to execute" (SICP). Human-readable code is essential for maintaining
secure, reliable, and efficient software development.

But with the advent of AI coding, textual source code now has a broader audience:
machines need to understand it, too. AI agents increasingly participate in code
modification, refactoring, and generation.

In , we showed that poor code quality
correlates with higher defect rates, slower delivery, and ballooning costs. Now we’re seeing
the next evolution of that insight: unhealthy code also makes AI behave badly.

Code Red: The Business Impact of Code Quality

Limited risk:

healthy code

2

https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf?utm_campaign=34032445-AIreadycode&utm_source=website&utm_medium=whitepaper&utm_content=codered

AI-friendliness starts with Code Health

The study defines “AI-friendliness” as the probability
that AI-generated refactorings preserve behavior and improve maintainability. It’s a large-scale
study of 5,000 real programs using six different LLMs to refactor code while keeping all tests
passing. The results were stark:

Code for Machines, Not Just Humans

LLMs consistently
perform better in
healthy code.

Unhealthy code
triggered a higher rate
of AI-introduced
defects across the
board.

There’s a 30% higher
defect risk when
applying AI to
problematic code.

The study used the CodeHealth™ metric as a proxy for code quality. Code Health is known to
correlate with . Code Health has also been used in
recent industry-facing AI studies.

See the for more details, the for
industry examples, and the paper on for an
applied AI study.

lower defect density and increased speed

Code Health overview multi-dimensional AI benchmarking
ACE: Automated Technical Debt Remediation

Development is 9x faster in healthy code

9x

CodeHealth™ - the leading quality metric

CodeScene's CodeHealth™ is the only
code-level metric with proven business
impact (faster & better), backed by award
winning, fact-based research. 

CodeHealth™ is a ten point scale with
three categories:

﻿﻿ (healthy code): 9.0+

﻿﻿ (technical debt): 4.0 - 8.9

﻿﻿ (severe technical debt): 1.0 - 3.9

Green
Yellow
Red

3

https://arxiv.org/pdf/2601.02200
https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf?utm_campaign=34032445-AIreadycode&utm_source=website&utm_medium=whitepaper&utm_content=codered
https://codescene.com/product/code-health?utm_campaign=34032445-AIreadycode&utm_source=website&utm_medium=whitepaper&utm_content=codehealth
https://arxiv.org/pdf/2508.13757
https://arxiv.org/pdf/2507.03536

The hidden limitation: Reality is worse. Much worse.

A 30% increase in AI-induced defects is severe. But the study only included code with Code
Health ≥ 7.0. This means the research never touched the truly unhealthy code found in many
legacy codebases: the modules scoring 4, 3, or even 1.

What would the AI error rate be on such code? Based on patterns observed across all Code
Health research, the relationship is almost certainly non-linear:

At Code Health 7, AI breaks code
frequently

At Code Health 3, breakage may
become the default outcome

This mirrors human data: defect rates rise sharply in tangled, deeply unhealthy code.

Danger zone:

unhealthy code

Limited risk:

healthy code

Projected AI break rate:

steep increase in

unhealthy code

Projected AI break rate for truly unhealthy code below 7.0 in Code Health; the break rate is likely to increase steeply. The projection is
based on the non-linearity of Code Health outcomes observed in both Code Red and the Increasing, Not Diminishing Returns papers.

This gap highlights a critical risk: Organizations with very low-quality codebases may
experience dramatically higher AI breakage rates than the study could measure.

4

The business implication

of AI: Technical debt now

has a multiplier

Naively used, AI agents will serve more as legacy code generators than genuine help. There’s
now clear evidence to make any AI adoption a serious concern:

More bugs

AI adoption leads to without any increase in throughput.41% more defects

AI makes you slower

This is a fascinating one: developers self-estimated that their AI reduced completion
time by 20%, whereas in reality (!) than a control group of devs
without AI.

they needed 19% longer

Initial AI velocity gains are cancelled out

Novel research demonstrates how the initial promising velocity gains from AI adoption
are after just two months. The reason? A massive increase in code
complexity.

fully cancelled out

So where is the good news? Well, there is hope. As the research shows, Code Health acts as a
protective buffer. Healthy code reduces error-generation risk and gives AI the structural
clarity it needs to act more predictably.

The CodeHealth™ metric plays the key role. It’s the objective standard that turns AI from a fast
code generator into .

The first step is to use Code Health for assessing AI-readiness. That way, you avoid risks by
putting AI to work only where the probability of success works in your favour.

 a quality-aware engineering partner

5

https://resources.uplevelteam.com/gen-ai-for-coding
https://arxiv.org/abs/2507.09089
https://arxiv.org/pdf/2511.04427
https://codescene.com/blog/strengthening-the-inner-developer-loop-turn-ai-into-a-reliable-engineering-partner?utm_campaign=34032445-AIreadycode&utm_source=website&utm_medium=whitepaper&utm_content=blogpost

Healthy and highly maintainable code comes with other benefits, too. Not only does it elevate
AI performance, healthy code also shortens development times and reduces defects up to
15x. As a concrete example, the statistical model shows that improving Code Health from the
industry average of 5.15 to the elite level of 9.1 gives the following benefits:

~36% faster

development speed

~36% reduction

in production defects

This implies that you can have it all: AI-friendly code means increased speed with quality.

Va
lu

e
cr

ea
ti

on
:

Code Health →

The relationship between Code Health and business outcomes (faster & better) is non-linear; value creation accelerates in highly
maintainable code (Data from M. Borg, et. al. 2024) ."Increasing, not Diminishing: Investigating the Returns of Highly Maintainable Code”)

 Caution: AI break rate is never zero 

Maintaining and enforcing (e.g. via servers) strong code quality
protects the shape and health of your codebase, but behavior still needs checks. That’s
where a strong test suite, good code coverage, and human review comes in; an AI
cannot be trusted to put code into production. 

With any technical debt removed, those checks are far easier to perform. Developers
review healthy code more than as unhealthy code, which dramatically
lowers the overhead of keeping AI safe.

code health aware MCP

twice as fast

6

https://arxiv.org/pdf/2401.13407
https://codescene.io/docs/developer-tools/mcp/codescene-mcp-server.html
https://arxiv.org/pdf/2304.11636

Conclusion: Code for
machines, not only humans
Machines get confused by the same patterns as humans. The evidence is clear: unhealthy
code undermines AI-assisted development, increasing breakage rates and reducing the
benefits of automation.

Organizations that want safe, reliable, and effective AI-assisted development must invest in
Code Health as a foundational capability. Without it, AI will not accelerate delivery; it will
accelerate defects and developer frustration.

Safeguard healthy code, uplift unhealthy code

You have seen the research on AI readiness and why code health is essential for AI-
assisted development. The CodeScene MCP Server turns those insights into action by
exposing CodeScene’s Code Health analysis as local, AI-friendly tools.   

The result is three high-impact use cases: 

Safeguard AI-Generated code, automatically

Uplift unhealthy code: refactoring safely with + AI

Understand existing code before acting

CodeScene ACE

rpm

db

transport

util

dbtests
bson

shell

client

executor

scripting

squery

repl

pipeline

exec

storage

commands

catalog

matcher

index

timeseries

auth

op_observer

geofree_mon

fts

Danger zone

AI friendly

Code Health visualisation

Example on areas with red, unhealthy
code where an AI agent will have a high
break rate.

Read more and try out the MCP.

View the docs

7

https://codescene.com/product/integrations/ide-extensions/ai-refactoring?utm_campaign=34032445-AIreadycode&utm_source=website&utm_medium=whitepaper&utm_content=ace
https://codescene.io/docs/developer-tools/mcp/codescene-mcp-server.html

