
Refactoring vs
Refuctoring:
Advancing the state of AI-
automated code improvements
By Adam Tornhill, Markus Borg, PhD & Enys Mones, PhD

9 January 2024

Summary
This report is the conclusion of a benchmark study of the most popular Large
Language Models (LLMs) and their ability to generate code for refactoring
tasks. We aim to illustrate the current standards and limitations, and seek to
show new methodologies with higher confidence results.

The remarkable advances in AI promised a coding revolution, spawning tools to help us
write code faster. Yet the true gains elude us. The crux? The majority of a developer’s time
isn't writing but understanding and maintaining existing code.

This whitepaper explores this new frontier by investigating AI support for improving existing
code. We do that via two important contributions:

First, we benchmark the performance of the most popular Large-Language Models
(LLM) on refactoring tasks for improving real-world code. We find that existing AI
solutions only deliver functionally correct refactorings in 37% of the cases.

Second, as a response to the poor performance of LLMs, we introduce a novel
innovation for fact-checking the AI output and augmenting the proposed refactorings
with a confidence level. By rejecting incorrect solutions, 98% of the remaining AI-
generated refactorings improve the code while retaining the original behavior.

This level of precision exceeds that of even human experts, highlighting the utility of fact-
checked AI. By applying this innovation, software organizations get a viable way forward for
automating improvements to existing code, including auto-mitigations of technical debt.

CodeScene 1

Introduction

Figure 1: State-of-the-art generative AI breaks the code in 63% of all refactoring attempts (left). Fact-checking the
AI allows us to reject the majority of all broken refactoring attempts.

Understanding
70%

25%

Writing/Editing code
5%

CodeScene 2

As exciting as the AI revolution is, we are far
from realizing the claimed productivity
breakthrough. At least for non-trivial coding
tasks. (See our Forbes article for why AI-
assisted coding is still in its infancy).

Specifically, two main barriers remain to be
conquered before AI can truly disrupt the
way we work with source code:

Optimize for software maintenance
which accounts for more than 90% of a
software product’s life cycle costs.
Specifically, 70% of developers’ time is
spent on program understanding,
meaning that any improvements that
make the existing code easier to grasp
will have a high return on investment.

1.

Benchmark: AI
performance on code
refactoring

Figure 2: The majority of a developer’s time is spent trying
to understand the existing system (data from Minelli, et.
al., 2015) 1

1.
Improve AI precision to the level of a
human expert. The disappointing 37%
correctness score of today’s AI solutions
simply isn’t good enough for refactoring
production code. Rather, the hit-or-miss
success ratio adds to the problem by
increasing developers’ cognitive load as
we have to scrutinize all AI refactorings
with great care to sort out the good
from the bad. Reviewing code is
arguably a harder task than writing it.

2.

These two factors indicate that innovation
in tooling to support improving existing
code – without breaking it – is a more
important direction than focusing on
optimizing the less significant code-writing
process. Let’s discuss why.

Are we refactoring or just
breaking code?
Refactoring is defined as improving the
design of existing code without changing its
behavior. It’s a simple definition, but with
some important implications:

It’s not a refactoring unless we improve
the design. “Improve” has been largely
subjective. To automate refactoring, we
need a gold standard to make
improvements objectively measurable.
It’s not a refactoring if we fail to
preserve the behavior of the original
code, e.g. we introduce a bug. To
automate refactoring, we need
confidence that the machine adheres to
this assumption.

Unless these two conditions are met, a code
change is simply not a refactoring. For the
purpose of this article, we will use the term
refuctoring to refer to the process of
changing existing code while – involuntarily
– altering the program’s behavior.

1. https://ieeexplore.ieee.org/abstract/document/7181430

Other activities
(e.g. meetings,

navigating code)
25%

https://www.forbes.com/sites/forbestechcouncil/2023/12/28/navigate-the-promises-and-risks-of-ai-assisted-coding/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610582/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610582/
https://ieeexplore.ieee.org/abstract/document/7181430

Benchmarking criteria: a gold standard for code
improvements
This study uses the Code Health metric as a proxy for code quality. Code Health is the only
code-level metric with a proven business impact in terms of development velocity and post-
release defects. (See the Code Red paper for details).

The Code Health metric is a particularly good fit when refactoring code as the measure is
based on factors known to make code harder to understand and riskier to maintain in terms
of defect introduction:

The detailed Code Health scores used in this study go from 10.0 (healthy code) all the way
down to 1.0 (a maintenance nightmare / spaghetti code / high technical debt). As such, the
Code Health metric offers an objective assessment of any code changes: did the Code
Health improve – a refactoring that makes the code easier to understand – or was the code
merely changed without getting objectively better?

Figure 3: Code Health is a language-neutral, aggregated code quality metric based on a combination of 25 code smells.

AI performance on code refactoring
To evaluate how well current AI platforms perform, we collected more than 100,000 real-
world code smells, and pointed state-of-the-art AI models at these targets to refactor the
code. We used the CodeScene tool to identify Code Health issues in codebases. We then
evaluated the correctness of the attempted refactoring by running the code’s automated
tests, as well as making sure the code quality improved by re-assessing the Code Health.

For this benchmarking study, we focused on code in JavaScript and TypeScript. LLM
performance varies across programming languages, so we chose to start with two popular
and well-supported languages. We also centered the refactorings on four common Code
Health issues: Complex Conditionals, Deep Nested Logic, Bumpy Road, and Complex
Method. (See the docs for descriptions of these code smells).

CodeScene 3

https://codescene.io/docs/guides/technical/code-health.html
https://codescene.com/hubfs/web_docs/Business-impact-of-low-code-quality.pdf

AI model

Valid code?

(check the
syntax of the
refactored
code)

Code Health
improved?

(did the code
change by the
AI mitigate the
code smell?)

Valid refactoring?

(do the tests still pass after the
AI changed the code?)

PaLM 2 code 99.93% 68.75% 37.29%

GPT-3.5 100% 69.89% 30.26%

PaLM 2t 100% 66.54% 34.73%

phind-codellama-34B-v2* 100% 78.76% 18.14%

Using this data, we measure the ratio of refactoring vs refuctoring for a series of popular AI
models:

Notes on GPT4
Performance
During our research, we also
made some benchmarks using
GPT4. These tentative studies
indicate that GPT4 seems to
perform marginally better.
However, those potential
improvements are offset by GPT4
being significantly slower and an
order of magnitude more
expensive. Without a drastic gain,
GPT4-based refactoring doesn’t
seem to be a viable alternative
either.

Table 1: Benchmarking of refactoring correctness for a series of popular Large Language Models. *A fine-tuned model
based on CodeLlama 34B.

As the preceding table shows, using an out-of-the-box AI is very much a hit-or-miss situation.
In fact, with the best-performing model only giving a 37% probability of success, it’s more
likely that the attempted refactoring will break your code than not.

Is fragile code an acceptable
new normal?
Our research findings align with a 2023 study
which found that popular AI-assistants like
Copilot and CodeWhisperer only deliver
functionally correct code in 31% - 65% of the
cases. Generating new code is arguably a
simpler task than refactoring complex code,
which explains the higher-end of those
numbers. However, those research findings
are within the same ballpark; the performance
of those AI-assistants reflects the
performance of the underlying LLM.

It’s safe to assume that a human developer
shipping code which breaks 60-80% of the
time would be asked to look for new
challenges. Promptly.

CodeScene 4

https://www.phind.com/blog/code-llama-beats-gpt4
https://arxiv.org/abs/2304.10778

How does an AI err?
Strictly speaking, an AI based on LLMs doesn’t have a concept of “correctness”;
some tokens (e.g. output) are more probable than others, but the AI itself doesn’t
execute the code, nor does it “prove” its response in any meaningful way.

This spells trouble as the nature of programming is a much more constrained
environment than a conversation between humans. For example, when
generating a natural text, choosing one synonym over another usually doesn’t
make or break a text. (e.g. consider “gear” and “equipment”). Not so in code – a
single character can alter the behavior of any program.

During our research we inspected a lot of AI-generated code. Some common
patterns are that the AI:

Drops entire branches, e.g. throwing away an if-block. Note that these bugs
can easily become a cybersecurity threat in case important input validation
gets removed.
Inverts boolean logic, e.g. a && b becomes !(a && b).
In JavaScript – which is notorious for its complex rules for the this-keyword –
the AI often mistreats the function-level this by extracting the literal
expression to a new function, a classic refuctoring pitfall.

All of these failures are subtle and not obvious to the human eye during a code
inspection.

Figure 4: Example on an AI-introduced, subtle bug that takes a great deal of effort to track down.

CodeScene 5

These findings also indicate that we should be more cautious about how and when we apply
AI-assisted coding. What if we could add a safety net around the AI? That would let us reap
the benefits of automation by outsourcing the mechanics to an AI while still giving us – as
software people – some guarantees that we are refactoring, not refuctoring. Welcome to the
future – there’s a light on the horizon.

Tools for inspiration…but use with care!
The AI-assistance of today can still be helpful, despite their frequent errors. In particular, an
AI-assistant like Copilot or CodeWhisperer can be useful as the starting point for new code,
serving as an inspiration and a coach. However, the burden is still on you to verify that the
code is correct and – just as important – that it’s code you and your team can maintain going
forward.

Into the future: improving automated refactoring
by fact-checking the AI
Given the low correctness of the stochastic AI models, it becomes strikingly clear that we
cannot use out-of-the-box AI models or tools that merely wrap an LLM API. Instead, a more
promising approach is to use generative AI to come up with a pool of potential solutions and
then add a fact-checking layer around the AI. That way, we get the benefits of automation
while retaining a certain level of guarantee that a proposed solution is a refactoring rather
than a refuctoring.

CodeScene’s research team took on this challenge by creating a layered fact-checking
model:

Figure 5: A schematic overview of the layered model for fact-
checking AI-refactored code. CodeScene 6

Table 2 shows that the layered fact-
checking model is a massive
improvement over GPT-3.5 – and any
other commercially available LLM – with
respect to correctness. An LLM without
fact-checking will always give you an
answer, be it correct or not. CodeScene’s
fact-checking model is able to validate
the proposed code changes, and reject
98% of the incorrect refactorings.

Before we discuss the disruptive
potential that this level of AI performance
enables, we need to look behind the
model to understand how the AI fact-
checking is possible at all.

Table 2: Benchmarking data showing how the confidence in refactoring can be improved to 98%. GPT-3.5 performance
added for comparison.

Data as the secret sauce
The main challenge in the fact-checking
is to ensure semantic equivalence
between the original code and the
refactored code. This is a largely
unsolved research problem

in academia where the problem is studied
in the area of Automatic Program Repair
(APR).

Potential solutions like formal methods
and code similarity metrics haven’t been
able to reliably verify semantic
correctness between a given piece of
code and its fixed/refactored counterpart.
So how did the CodeScene team pull this
off? There are two unfair advantages at
our disposal plus one critical constraint
that we chose:

First, when building the fact-checking
model we had access to our data lake
consisting of +100,000 real-world
JavaScript refactoring samples with a
known ground truth (i.e. semantically
equivalent or not). This made it possible
for our algorithms to observe and learn
patterns in successfully refactored code.

Correct code smell refactorings

Solution
Complex
Conditional

Deep
Nested
Logic

Bumpy
Road

Complex
Method

Raw GPT-3.5 33.7% 26.0% 26.3% 28.2%

AI with CodeScene’s fact-
checking

96.7% 98.4% 97.8% 98.9%

To evaluate the fact-checking model, we re-ran the benchmarking study described in Table 1
above. This makes it possible to compare the correctness gained from the fact-checking
model:

Benchmarking: improving AI correctness with a fact-
checking model

CodeScene 7

Second – and in fact a basis and pre-requisite for #1 – the data lake was built up using the
automated code review capabilities of the CodeScene tool. This automated code review is
deterministic and driven by the Code Health metric. This step is crucial as it directly
influences the quality of the data; poor sample quality, and it won’t be possible to achieve
these levels of accuracy.

Third, it’s important to point out that we didn’t attempt to solve semantic equivalence in
general. Doing so would be futile at best. Instead, we limited the fact-checking to the set of
code smells identified via the Code Health metric. That way, we could be more specific in our
AI prompts as well as constraining the fact-checking model to a finite number of structural
changes that can be learned by our in-house models.

Summary
This benchmarking study shows that AI is nowhere near replacing humans in a coding
context; today’s AI is simply too error-prone, and far from a point where it is able to securely
modify existing code. However, by introducing a novel fact-checking model for the AI output,
we can elevate generative AI to a point where it is genuinely useful as several complex code
smells can be mitigated safely. This allows us to optimize for understanding – the dominant
and most human-intensive aspect – not just the narrow task of writing new code.

Perhaps the most intriguing possibility is the progress in technical debt mitigation made
possible via this innovation. Every business manager is aware of technical debt, but few
prioritize it – and even fewer manage it actively. Traditionally, there’s been a hard trade-off
between improving existing code vs. adding the next big feature. Predictably, improvements
get the back seat despite hard numbers showing how a healthy codebase is a competitive
advantage. Now that the process can be automated to a large degree, companies can finally
start to reap these benefits without having to put feature development on hold.

During our research, we also couldn’t help to reflect on the fact that these benchmarks on AI-
assisted programming re-emphasize solid engineering practices like unit testing, code quality
gates, and continuous code reviews. Those practices were always important, but perhaps
even more so in the age of AI where humans need to understand and verify machine-
generated code.

In our study, we too used commonly available AI models which we augmented with specific
domain data to improve their refactoring performance. Yet, the key to our breakthrough
wasn’t AI augmentation or magic prompt engineering, but rather the ability to provide a
confidence indication for each refactoring with respect to its semantic equivalence to the
original code. Knowing the confidence of a proposed refactoring is a time saver.

CodeScene 8

https://arxiv.org/abs/2203.04374
https://arxiv.org/abs/2203.04374
https://codescene.com/blog/cli-tool
https://codescene.com/blog/cli-tool

Adam Tornhill is the founder and CTO of CodeScene. Adam is a programmer who combines
degrees in engineering and psychology. He’s also the author of the best-selling Your Code as
a Crime Scene as well as multiple other technical books.

Markus Borg, PhD, is a senior researcher at the intersection of software engineering and
applied AI. He is a principal researcher at CodeScene and an adjunct associate professor at
Lund University, Sweden.

Enys Mones, PhD, is the Lead Data Scientist at CodeScene who also enjoys doing basic
research. A theoretical physicist by training, his focus is applying mathematical models to
understand human-computer interaction.

www.codescene.com

About the authors

Try the Automated Refactoring on your own code
The fact-checking innovation described in this whitepaper will be available to the general
public via CodeScene. Sign-up for the beta testing waitlist at https://codescene.com/ai.

Next generation code analysis

https://pragprog.com/titles/atcrime2/your-code-as-a-crime-scene-second-edition/
https://pragprog.com/titles/atcrime2/your-code-as-a-crime-scene-second-edition/
http://codescene.com/
https://codescene.com/ai

