
 of 1 19

Behavioral
Code
Analysis in
Practice

Whitepaper

This whitepaper provides a detailed view of how CodeScene
supports an organization with clear feedback loops and
actionable insights into the evolution of a software system.
The paper explains the purpose and value behind those
analyses and how CodeScene complements existing
workflows and processes.

Target audience
• Technical leaders
• Software architects
• Development teams
• Managers

About CodeScene
CodeScene was born in 2015 when founder
Adam Tornhill published the book “Your Code
as a Crime Scene”. It introduced a new
approach to software analysis which focused
on the evolution of a codebase over time.

CodeScene has evolved at a rapid pace to
become the next generation of code analysis
and is used by global Fortune 100 companies
in a wide variety of domains.

 of 2 19

Content

1. Introduction
CodeScene – A Multi-Purpose Tool Suite 3

Why CodeScene? The Main Goals and Objectives 4

2. Users and Use Cases
Management and Product Owners 6

Bridge the gap between Tech and Business 6

Key Personnel Analysis and Team Planning Simulations 6

Technical Leaders, Software Architects, and Management 7

Prioritize Technical Debt 7

Quantify the Cost of Technical Debt and Code Quality Issues 9

Manage the identified Technical Debt by Specifying Goal 10

Supervise planned goals with CI/CD Quality Gates 10

Organizational Analyses 11

Evaluate organizational efficiency 11

Perform key personnel analyses . 12

Development Team 13

Prioritize code reviews 14

Guide Sprint Retrospectives 14

Support On-boarding and Learning 15

Use the X-Ray analysis to prioritize actionable refactorings 15

QA, Testers, and DevOps Organizations 16

Predict and Detect Delivery Risks 17

Evaluate Test Automation Efficiency 18

Guide Exploratory Testing, Prioritize Tests 18

3. Get CodeScene
SaaS, or host it in a Private Cloud or custom Data Center 19

Further Information and Contact 19

 of 3 19

1. Introduction

CodeScene is a reaction and a complement
to traditional static code analysis. The main
difference between CodeScene's behavioral
code analysis and traditional code scanning
techniques is that static analysis works on a
snapshot of the codebase at a single moment
in time. CodeScene considers how the
system has changed over time and translates
the results to relevant, actionable information
directly into business value. CodeScene
inspects more than how code changes by
considering the organization and the people
side of the system in analyzing the system's
evolution. The output is a set of valuable
information invisible in the source code itself,
such as measures of team efficiency,
onboarding costs and off-boarding risks.

Serve different stages in software
delivery cycle
A behavioral code analysis adds value by
introducing feedback loops in all software
delivery stages.

Serve multiple roles in your
organization
Software delivery is a cross-functional team
effort, and CodeScene reveals insights
relevant for the various roles involved in your
delivery process. This whitepaper introduces
the different analyses useful for product
managers and product owners, technical
leaders, software architects and software
delivery managers, software developers,
quality assurance and DevOps engineers.

A multi-purpose
visualization tool

 of 4 19

• Bridge the gap between Tech and
Business. CodeScene visualizes something
as deeply technical as code for non-
technical stakeholders. This allows
management teams to see the
development costs in the context of the
system as well as the overall delivery
performance.

• Monitor all your products at the inter-
project dashboard. The key metrics on the
dashboard highlight the progress on the
goals, and point you to the products/
codebases/projects in need of attention
and actions.

• Perform key personnel analyses to ensure
you have an adequate knowledge
distribution in the critical parts of the
codebase.

• Evaluate organizational efficiency by
measuring the operational boundaries of
each team and detect modules that
become coordination bottlenecks.

• Use CodeScene for project planning with
on- and off-boarding simulations that
helps you detect and act on potential off-
boarding risks before they happen.

CodeScene main
goals and objectives

Management / Product owners

• Prioritize technical debt based on the
expected return on investment (ROI) if the
debt is paid-off.

• Supervise planned goals with CI/CD
Quality Gates based on CodeScene’s
Intelligent Notes where you specify your
decisions and plans on the identified
technical debt.

• Quantify the cost of technical debt and
code quality issues through the integration
with project management tools.

• Manage the identified technical debt by
recording decisions, context, and plans
directly in the tool that will then supervise
the progress.

Technical Leaders / Software Architects / Management

 of 5 19

• Prioritize code reviews by integrating
CodeScene in your CI/CD pipeline
CodeScene classifies the risk of each pull
request and/or commit, and delivers early
warnings for changes that degrade code
quality.

• Support on-boarding and learning
through CodeScene’s interactive
visualizations. Find the weak spots in the
codebase, identify the most relevant
parts, and see how they fit together and
which of your peers to communicate with.

• Guide retrospectives with data from how
the team has interacted with the code
during a sprint/iteration.

• Use the X-Ray analysis to prioritize
refactorings on a function level.

• Evaluate existing designs through
CodeScene’s unique change coupling
analyses that identify hidden and implicit
dependencies that are invisible in the
code itself.

Development team

• Evaluate test automation efficiency by
supervising the code quality in your
automated tests.

• Predict and detect delivery risks through
CodeScene’s branch analyses and
automated risk predictions

• Guide exploratory testing through
CodeScene’s interactive hotspot maps that
show where most development activity has
been over a particular period of time.

QA / Testers / DevOps organizations

 of 6 19

2. Users and Use Cases

Bridge the gap between
Tech and Business

Getting situational awareness in a software
project is a hard problem. Even with rapid
iterations and quick feedback, we’re
focusing mostly on surface behavior or
functional correctness. And when we have
code-level metrics, they tend to measure
technical details that aren’t easily
communicable to non-technical
stakeholders.

With CodeScene, management teams and
stakeholders get the ability to see
development costs in the context of the
system.Through a customized dashboard
you can follow graphs and trends.
Understanding your delivery performance
and hidden risks today and what direction
your business needs to go tomorrow.

Management and
Product owners

CodeScene combines social measures with
technical metrics to detect organizational
risks in case one or more developers leave
the organization. With the simulation
module, you can detect any high-risk areas
where the off-boarding results in a loss of
mastery, which in turn might lead to
technical issues like defects and financial
risks like delays and missed deadlines.

CodeScene auto-detects key personnel
risks. That is, parts of the system that are
developed mainly by one or two individuals.
CodeScene visualizes exactly which parts of
the system that are as risk. CodeScene also
includes an off-boarding simulator that
shows the potential impact of an off-
boarding. Combined with CodeScene’s
technical analysis, the tool automatically
identifies high risk areas that lets you focus
on-boarding efforts to where they are
needed the most.

18%

18% of code
written by 1 developer

30%

30% total
abonded code

Key Personnel Analysis and
Team Planning Simulations

 of 7 19

• Hotspots

• Code Health

• Trends

• Architectural Change Coupling

• Defect Distribution

• Initial in-depth analysis to assess the
current state of the code and plan
mitigations as needed.

• Weekly follow-ups of critical findings
with measurable effects of the
mitigations and actions.

• Weekly or monthly monitoring and
supervision on the state and progress of
the system.

Technical leaders,
Software Architects
and Management

Software systems often contain several
instances of problematic code that are
hard to understand, brittle, and hence
potentially expensive to maintain. In a
large system, there might be thousands
of lines of such problematic code. As an
organization we cannot -- and should not
– address all of those potential quality
problems at once; the task is simply too
big, the risk and cost too high. So, we
need to balance the trade-off between
improving existing code versus adding
new features for end users.

CodeScene resolves this by prioritizing
the parts of the codebase that will bring
the biggest and quickest benefits to your
organization. The analysis is called
prioritized hotspots. A prioritized hotspot
is complicated code that the organization
has to work with often. That is, any
technical debt in those parts of the code
has a high interest rate.

Prioritize Technical Debt

Recommended Usage Frequency

CodeScene Analyses

 of 8 19

The hotspot analysis is based on evolutionary
patterns and trends, and CodeScene usually
identifies about 2-4% of a codebase as
prioritized hotspots. The priorities build on a
pattern that occurs in any codebase,
independent of programming language,
domain, or technology. By prioritizing
technical debt at the head of the curve,
CodeScene ensures that the suggested
improvements give you a real return on
investment should you decide to pay off
any potential technical debt in that part
of the code.

Once CodeScene has detected a hotspot,
the tool provides an automated code review
that classifies each hotspot according to
severity and code health. That classification
is available at a glance for both sub-systems
and individual hotspots.

Why You don’t have to Pay Off
all Technical Debt

In the preceding figure 2, the X-axis shows
each file in the system sorted on its change
frequencies. The Y-axis shows the number of
changes done to each file over time. These
power law distributions show that:

• Most development activity is located in a
small part of the total codebase.

• The majority of all files are in the long tail,
which means they represent code that's
rarely, if ever, touched.

C
ha

ng
e

fr
eq

ue
nc

y

1 year in Roslyn (C#, VB)

6 years of Erlang

12 years of Ruby on Rails

Each file in the system

Figure 2. Change frequency of source code files

Figure 1. Examples of change frequency
of open source codebases

 of 9 19

CodeScene combines its technical analyses
with data from project management
software, like JIRA, Trello, GitHub Issues, or
Azure DevOps. CodeScene’s cost analyses let
you reason about the technical and
organizational findings from a financial
perspective. For example, how much time do
you spend on defects in your top hotspots?
What amount of work is unplanned? And
what happens over time?

Quantify the Cost of Technical
Debt and Code Quality Issues

This information is used to ensure that the
code evolves in the right direction. In general,
the ideal situation is to spend less time on bug
fixes and increase the portion of time spent
on new features and improvements. Using the
cost trends, it is now possible to measure this,
which also lets you evaluate the effect of
technical and organizational improvements
resulting from the other analyses,

Figure 3. CodeScene shows the relationship between code health and issues
and costs from your issue tracking system

Average

 of 10 19

There’s always a trade-off between improving
existing code and adding new features.
Improvements cost time and money, and
when we refactor or even redesign a piece of
code, we are placing a bet that our
investment will pay off in the future. As such,

larger and more significant improvements
have to be balanced against the short-term
goals of the product. To address those forces,
CodeScene lets you plan goals for each
hotspot. Your goals are then automatically
supervised and act as quality gates in CI/CD.

Manage the identified Technical
Debt by Specifying Goals

The earlier you can react to any potential
problem or surprise, the better. That’s why
CodeScene offers integration points that let
you incorporate the analysis results into your
build pipeline. That way, CodeScene can
supervise your hotspots to ensure that all
goals are on track and that the code health is
maintained. In addition, CodeScene comes
with an open API that lets you integrate the
analyses into any delivery pipeline.

CodeScene integrates with the following
systems:

• GitHub

• GitLab

• BitBucket

• Azure DevOps

• Jenkins

Quantify the Cost of Technical
Debt and Code Quality Issues

Figure 4. CodeScene provides alerts for any code changes that violate a goal.

 of 11 19

Recommended Usage Frequency

• Perform an in-depth analysis as input to
planned organizational changes such as
new team structures or significant
architectural changes.

• Supervise the potential coordination needs
between feature teams on a per sprint
basis.

• Off-Boarding simulation used as
developers leave the organization or are
transferred to other product lines or
projects.

Organizational
Analyses

Behavioral Analyses

• Conway’s Law

• Inter-Team Coordination Needs

• Operational Team Boundaries

• Knowledge Distribution

 of 12 19

 Evaluate Organizational Efficiency

CodeScene measures the operational
boundaries of each team and detect modules
that become coordination bottlenecks. This is
important because social aspects like
coordination, communication, and motivation
issues increase in importance with the size of
an organization.

Unfortunately, these aspects of software
development are invisible in the code itself; if
you pick up a piece of code from your system
there’s no way of telling if it’s been written by
a single developer or if that code is a
coordination bottleneck for several
development teams. Hence, CodeScene’s
behavioral code analysis helps you fill in the
blanks.

The organizational and social side of code has
historically been left largely to subjective
judgments. Using behavioral code analysis,
we can start to guide those decisions with
objective data instead and measure aspects
like Conway’s Law.

Perform key personnel analyses

Figure 5. Example on inter-team dependencies in a micro-
service architecture (each node is a micro-service).

Knowledge island in Complex Hotspot

Knowledge island

Risk: Complex Code by Former Contributors

Multiple Active Developers

Maintaining a high system mastery means
ensuring you have an adequate knowledge
distribution in the critical parts of the
codebase. CodeScene measures and
identifies potential risks in this area, and
visualizes the knowledge distribution in an
interactive map:

https://codescene.com/blog/measure-conways-law/

 of 13 19

• Hotspots

• Code Health

• Virtual Code Review

• X-Ray

• Change Coupling

• Risk Prediction through CI/CD
integration.

• Indirect daily use through integration
of CodeScene in the continuous
integration pipeline.

• Sprint-based usage to support
retrospectives and sprint planning

• Spontaneous as part of learning a new
part of the codebase or as on-boarding
support.

• Occasional usage (approximately
weekly or monthly) to Investigate
hotspots in depth when they are
detected.

• Occasional usage (weekly or monthly)
to follow-up refactoring effects with
virtual code reviews.

• Weekly supervision of implicit
dependencies at the architectural
level.

Development Team

Recommended Usage FrequencyBehavioral Analyses

 of 14 19

Like all manual processes code reviews are
hard to scale. As an organization grows, code
reviewer fatigue becomes a real thing: there’s
just so many lines of code a developer can
review each day. Beyond that point we’re
likely to slip. The result is increased lead
times, bugs that pass undetected to
production, and – in extreme cases – the risk
for burnout. At CodeScene we have

developed a system for automated risk
classifications to prioritize the code in need
of a review. The risk classification is exposed
through an open REST API that lets you
integrate the classification into your
continuous integration pipeline. The following
figure shows an example from a Jenkins build
where a high-risk change is detected:

Prioritize code reviews

The traditional format of sprint retrospectives
– like most group activities – makes us
sensitive to a number of biases such as
availability heuristics, pluralistic ignorance,
social desirability, and confirmation bias. By
informing decisions with data about how our
system evolves, we make an important shift:
we move away from speculations and reduce
a number of social biases in the process.

A behavioral code analysis provides data that
reduces such biases, and CodeScene comes
with a special retrospective feature that runs
an analysis on a team’s development activity
over the last sprint. That means you get data
on how your development efforts, features
and stories actually impacted your codebase.

Guide Sprint Retrospectives

Figure 6. CodeScene automated code reviews

 of 15 19

CodeScene's interactive hotspot maps show
a holistic overview of the codebase in its
socio-technical context. The map is a great
starting point when trying to get insights into
a new codebase. From the hotspot map,
developers can focus on the core parts of the
codebase, and the virtual code review
provides detailed insights into the technical
and social factors of a module or file.

Hence, when working in a new part of the
codebase, use the patterns of the previous
developers to uncover technical challenges
and identify the primary developers behind
each piece of code.

CodeScene’s X-Ray is a programming
language aware analysis tool that operates
on the function/method level of your code.
Thus, X-Ray is able to provide deep and

detailed information on what’s happening
inside a large hotspot. The X-Ray analysis is
used to prioritize actionable refactorings
inside larger hotspots.

Use the X-Ray analysis to prioritize
actionable refactorings

Figure 7. Identify primary developers
behind each piece of code.

Support On-boarding and learning

Figure 8. X-Ray runs a hotspot analysis on a function
level to provide actionable refactoring targets.

 of 16 19

• Branch Analyses

• Risk Predictions

• Defect Mining

• Hotspots

• Code Biomarkers

• Daily monitoring of upcoming delivery
risks.

• Weekly supervision of hotspots in the
test automation code and infrastructure.

• Weekly supervision of implicit
dependencies on architectural level.

• Sprint-based priority of exploratory
testing targets.

QA, Testers and
DevOps Organizations

Recommended Usage FrequencyCodeScene Analyses

 of 17 19

Many organizations work on feature
branches and employ practices like
continuous integration/delivery. To work in
practice, those feature branches have to be
kept short-lived. By applying behavioral code
analysis, we’re able to visualize the branching
activity, measure lead times, and even
predict the delivery risk of individual
branches. The most important information
here is CodeScene’s automatic prediction of
delivery risk as shown in figure 9.

This risk classification predicts the risk for
defects, and is given on the scale 1-10 where
10 is the highest risk. An organization uses
this information to plan preventive measures
such as extra code reviews and tests. In
extreme cases, an organization may choose
to postpone the merge of high-risk branches
when close to a critical deadline. To provide
visibility, CodeScene comes with an auto-
updated dashboard that highlights delivery
risks as they happen.

Predict and Detect Delivery Risks

Figure 9. Automated prediction of delivery risks for ongoing work.

 of 18 19

Technical debt isn’t limited to application
code, and frequently supporting code such
as automated tests accumulate a high degree
of technical debt. When that happens, the
test code – intended to help an organization
go faster – suddenly becomes a bottleneck.
To avoid that situation, we recommend that
you include all test code in the analyses as
well. CodeScene specific detectors of code
smells in its biomarkers analysis.

Further, an X-Ray analysis of a test hotspot
might reveal opportunities to simplify the
code. Specifically, we recommend the
change coupling analysis combined with the
code similarity view; That’s CodeScene’s
copy-paste detector used on frequently co-
changing tests:

Evaluate Test Automation
Efficiency

Organizations that employ exploratory testing
techniques use the hotspot maps to identify
where the development activity has been
over a particular period of time, e.g. the last
sprint.

In addition, CodeScene also provides a Defect
Density view. The defect density view shows
how distributed the bug fixes are, which lets
you identify defect-dense areas of the code
and focus extra testing on those parts.

Guide Exploratory Testing,
Prioritize Tests

Figure 10. An example from ASP.NET Core MVC where the X-Ray
detects duplicated logic in the unit tests.

Figure 11. Bug distribution over the past year

 of 19 19

• CodeScene available as a SaaS product
at https://codescene.io/

• CodeScene is also available in an on-
premise distribution that you can host in
a private cloud or your own data center.

• The setup is easy since CodeScene is
also distributed as a Docker container.

3. Get CodeScene as a SaaS,
or host it in a Private Cloud
or custom Data Center

Contact: sales@codescene.com
Twitter: @codescene
LinkedIn: https://www.linkedin.com/
company/codescene

www.codescene.com
www.codescene.com/blog/

Contact

CodeScene as On-premiseCodeScene as SaaS

Further Info, Blog And Articles

mailto:sales@codescene.com
https://twitter.com/codescene
https://www.linkedin.com/company/codescene
https://www.linkedin.com/company/codescene
http://www.codescene.com
https://codescene.com/blog/
https://codescene.io/

